Welcome to sysbiotech’s documentation!¶
GeTPRA¶
The GeTPRA framework
This project is to develop a framework that systematically predicts Gene-Transcript-Protein-Reaction Associations (GeTPRA) in human metabolims and updates a human genome-scale metabolic model (GEM) accordingly. This source code implements the GeTPRA framework.
Features This source code executes following steps in the GeTPRA framework in order:
Get reactions from biochemical database using EC number
Standardize metabolite information
Compartmentalize metabolic reactions
Generate GeTPRA
Check ‘Exist in Recon 2M.1’
Check ‘Blocked reaction’
Check ‘Experimental evidence available’
See below for the implementation of EFICAz and Wolf PSort (optional features)
Installation Procedure Note: This source code was developed in Linux, and has been tested in Ubuntu 14.04.5 LTS (i7-4770 CPU @ 3.40GHz)
Clone the repository
Create and activate virtual environment
$ virtualenv venv
$ source venv/bin/activate
Install packages at the root of the repository
$ pip install pip --upgrade
$ pip install -r requirements.txt
Input files for the GeTPRA framework Following working input files can be found in: getpra/input_data/getpra_inputs/. These files were used for the data presented in the manuscript.
Gene-transcript ID annotation file format - Download gene-transcript ID annotation file from [Ensembl BioMarts](http://www.ensembl.org/biomart/martview)
NCBI gene ID Gene stable ID Transcript stable ID RefSeq mRNA ID UCSC Stable ID
2733 ENSG00000119392 ENST00000309971 NM_001003722 uc004bvj.4
2733 ENSG00000119392 ENST00000372770 NM_001499 uc004bvi.4
5690 ENSG00000126067 ENST00000373237 NM_002794 uc001bzf.4
5690 ENSG00000126067 ENST00000373237 NM_001199779 uc001bzf.4
5690 ENSG00000126067 ENST00000621781 NM_001199780 uc021olh.3
Download procedure
Go to [Ensembl BioMarts](http://www.ensembl.org/biomart/martview)
Click Dataset on the left menu
Select Ensembl Genes 89 in the drop-down menu CHOOSE DATABASE
Select Human genes (GRCh38.p10) in the drop-down menu CHOOSE DATASET
Click Filters on the left menu
Click GENE: in the main menu (center)
Check Gene type and select protein_coding
Click Attributes on the left menu
Check Features in the center
Click both GENE: and EXTERNAL: in the main menu (center)
GENE: -> Ensembl -> Uncheck Gene stable ID and Transcript stable ID
Check following items in order:
EXTERNAL: -> External References (max 3) -> NCBI gene ID
GENE: -> Ensembl -> Gene stable ID
GENE: -> Ensembl -> Transcript stable ID
EXTERNAL: -> External References (max 3) -> RefSeq mRNA ID
EXTERNAL: -> External References (max 3) -> UCSC Stable ID
Click the button Results on the top left
Click the button Go in the top center
- File names in the source:
Ensembl_GRCh38_EnsemblDB_v84.txt
Ensembl_GRCh38_EnsemblDB_v85.txt
Ensembl_GRCh38_EnsemblDB_v86.txt
Ensembl_GRCh38_EnsemblDB_v87.txt
Ensembl_GRCh38_EnsemblDB_v88.txt
`chem_xref.tsv` from `MetaNetX` - Download [chem_xref.tsv](http://www.metanetx.org/cgi-bin/mnxget/mnxref/chem_xref.tsv) from [MetaNetX](http://www.metanetx.org/) - File name in the source: chem_xref.tsv
`gene2ensembl.gz` from `NCBI FTP` - Download [gene2ensembl.gz](ftp://ftp.ncbi.nlm.nih.gov/gene/DATA/gene2ensembl.gz) from [NCBI FTP](ftp://ftp.ncbi.nlm.nih.gov/) - File name in the source: gene2ensembl.gz
`appris_data.principal.txt` from `APPRIS` - Download [appris_data.principal.txt](http://apprisws.bioinfo.cnio.es/pub/current_release/datafiles/homo_sapiens/GRCh38/appris_data.principal.txt) for annotation of principal isoform from [APPRIS](http://appris.bioinfo.cnio.es/) - File name in the source: appris_data.principal.txt
`subcellular_location.csv` from `The Human Protein Atlas` - Download [subcellular_location.csv](http://www.proteinatlas.org/download/subcellular_location.csv.zip) with subcellular localization information from [The Human Protein Atlas](http://www.proteinatlas.org/) - File name in the source: subcellular_location.csv
Recon model - Prepare a human genome-scale metabolic model with consistent TPR associations and that shows biologically reasonable simulation performance - File name in the source: Recon2M.1_Entrez_Gene.xml
EFICAz output file as input file - File name in the source: 20170110_EFICAz_result.txt. - EFICAz can be run with a different set of peptide sequences (see below).
WoLF PSort output file as input file - File name in the source: 20170110_WoLFPSort_result.txt - WoLF PSort can be run with a different set of peptide sequences (see below).
BRENDA data - Set user email address and password before implementing the GeTPRA framework. The framework programmatically fetches BRENDA data from BRENDA through its API.
##Implementation Note: All the arguments shown below should be provided when implementing the framework
Note: Make sure to provide own information for -brenda_email and -brenda_pw
Note: Implementation of this source code takes long (~ 8 h)
$ python run_GeTPRA_framework.py \
-output_dir ./getpra_results/ \
-ec ./input_data/getpra_inputs/20170110_EFICAz_result.txt \
-sl ./input_data/getpra_inputs/20170110_WoLFPSort_result.txt \
-brenda_email user_email_address \
-brenda_pw user_password \
-mnx_xref ./input_data/getpra_inputs/chem_xref.tsv \
-ensembl ./input_data/getpra_inputs/Ensembl_GRCh38_EnsemblDB_v88.txt \
-appris ./input_data/getpra_inputs/appris_data.principal.txt \
-model ./input_data/getpra_inputs/Recon2M.1_Entrez_Gene.xml \
-hpa ./input_data/getpra_inputs/subcellular_location.csv \
-ncbi_id_information ./input_data/getpra_inputs/gene2ensembl.gz
##Output files from the GeTPRA framework - Raw output files from the GeTPRA framework, which were used for the publication, are available in: getpra/getpra_results_publication_version/ - New output files upon implementation of the framework are generated in: getpra/getpra_results/. This folder is automatically created.
Implementation of EFICAz and Wolf PSort (optional) Output files of EFICAz and Wolf PSort serve as input files for the GeTPRA framework.
Peptide sequences of metabolic genes as inputs for EFICAz and Wolf PSort - Get peptide sequences of metabolic genes by implementing ./input_data/get_peptide_sequences.py
$ python ./input_data/get_peptide_sequences.py \
-output_dir ./input_data/getpra_inputs/ \
-model ./input_data/getpra_inputs/Recon2M.1_Entrez_Gene.xml \
-ensembl ./input_data/getpra_inputs/Ensembl_GRCh38_EnsemblDB_v88.txt
File name in the source: Ensembl_peptide_seq_metabolic_genes.fa
>ENSP00000452494|ENST00000448914 TGGY >ENSP00000488240|ENST00000631435 GTGG >ENSP00000487941|ENST00000632684 GTGG >ENSP00000451515|ENST00000434970 PSY >ENSP00000451042|ENST00000415118 EI
Installation 1. Download [EFICAz2.5](http://cssb.biology.gatech.edu/skolnick/webservice/EFICAz2/index.html)
Set environment variable for EFICAz2.5
$ export EFICAz25_PATH="[insert-destination-directory]/EFICAz2.5.1/" $ export PATH="${PATH}:${EFICAz25_PATH}"
Download [WoLF PSort](https://github.com/fmaguire/WoLFPSort)
Set environment variable for WoLF PSort
$ export WoLFPSort_PATH="[insert-destination-directory]/WoLFPSort/" $ export PATH="${PATH}:${WoLFPSort_PATH}"
Implementation of EFICAz and Wolf PSort - Predict EC numbers using [EFICAz2.5](http://cssb.biology.gatech.edu/skolnick/webservice/EFICAz2/index.html)
$ python $EFICAz25_PATH/eficaz2.5 Ensembl_peptide_seq_metabolic_genes.fa
Predict subcellular localization using [WoLF PSort](https://github.com/fmaguire/WoLFPSort)
$ WoLFPSort_PATH/bin/runWolfPsortSummary animal < Ensembl_peptide_seq_metabolic_genes.fa
- Output files from the above two implementations using peptide sequences of entire human genes are available in:
EFICAz: getpra/input_data/20170110_EFICAz_result_using_all_human_genes.txt
Wolf PSort: getpra/input_data/20170110_WoLFPSort_result_using_all_human_genes.txt
Extract metabolic genes from EFICAz and Wolf PSort output data obtained with entire human genes - Extract metabolic genes from the EFICAz and Wolf PSort output data
$ python ./input_data/get_EFICAz_WolfPSort_results.py \ -output_dir ./input_data/getpra_inputs/ \ -model ./input_data/getpra_inputs/Recon2M.1_Entrez_Gene.xml \ -ec ./input_data/getpra_inputs/20170110_EFICAz_result_using_all_human_genes.txt \ -sl ./input_data/getpra_inputs/20170110_WoLFPSort_result_using_all_human_genes.txt \ -ensembl ./input_data/getpra_inputs/Ensembl_GRCh38_EnsemblDB_v88.txt
- Resulting output files in the source:
EFICAz: getpra/input_data/Trimmed_EFICAz_result.txt
Wolf PSort: getpra/input_data/Trimmed_WoLFPSort_result.txt
Publication Jae Yong Ryu 1, Hyun Uk Kim 1 & Sang Yup Lee. Framework and resource for more than 11,000 gene-transcript-protein-reaction associations in human metabolism., Proc. Natl. Acad. Sci. U.S.A., 2017, http://www.pnas.org/content/early/2017/10/23/1713050114
ReconManager¶
Recon-manager procedure
This project is to develop a framework that systematically predicts Gene-Transcript-Protein-Reaction Associations (GeTPRA) in human metabolims and updates a human genome-scale metabolic model (GEM) accordingly. Recon manager is a part of the project, which is a collection of scripts to generate Recon 2M.1 and simulate Recon models.
Features Recon manager contains scripts that implement following tasks independently:
Convert GPR to TPR associations
Update metabolite information
Calculate model statistics
Evaluate functionality of metabolic model
Reconstruct personal GEMs using tINIT
Installation Major dependencies - [gurobipy](http://www.gurobi.com/)
Procedure Note: This source code was developed in Linux, and has been tested in Ubuntu 14.04.5 LTS (i7-4770 CPU @ 3.40GHz)
Clone the repository
Create and activate virtual environment
$ virtualenv venv
$ source venv/bin/activate
Install packages at the root of the repository
$ pip install pip --upgrade
$ pip install -r requirements.txt
Install [gurobipy](http://www.gurobi.com/)
In our case, we installed gurobipy in the root of a server, and created its symbolic link in venv:
$ ln -s /usr/local/lib/python2.7/dist-packages/gurobipy/ $HOME/recon-manager/venv/lib/python2.7/site-packages/
Feature: Convert GPR to TPR associations Input arguments and corresponding files Following working input files can be found in: ./input_data/GPR_to_TPR_inputs. These files were used for the data presented in the manuscript.
-o : Output directory
- -modelCOBRA-compliant SBML file (generic human GEM)
File name in the source: Recon2M.1_Entrez_Gene.xml
- -gene_transcript_informationA list of gene IDs and their matching transcript IDs
File name in the source: Ensembl88_GRCh38_all_transcript_information.txt
File format
NCBI gene ID Gene stable ID Transcript stable ID RefSeq mRNA ID UCSC Stable ID 2733 ENSG00000119392 ENST00000309971 NM_001003722 uc004bvj.4 2733 ENSG00000119392 ENST00000372770 NM_001499 uc004bvi.4 5690 ENSG00000126067 ENST00000373237 NM_002794 uc001bzf.4 5690 ENSG00000126067 ENST00000373237 NM_001199779 uc001bzf.4 5690 ENSG00000126067 ENST00000621781 NM_001199780 uc021olh.3
Download procedure
Go to [Ensembl BioMarts](http://www.ensembl.org/biomart/martview)
Click Dataset on the left menu
Select Ensembl Genes 89 in the drop-down menu CHOOSE DATABASE
Select Human genes (GRCh38.p10) in the drop-down menu CHOOSE DATASET
Click Filters on the left menu
Click GENE: in the main menu (center)
Check Gene type and select protein_coding
Click Attributes on the left menu
Check Features in the center
Click both GENE: and EXTERNAL: in the main menu (center)
GENE: -> Ensembl -> Uncheck Gene stable ID and Transcript stable ID
Check following items in order:
EXTERNAL: -> External References (max 3) -> NCBI gene ID
GENE: -> Ensembl -> Gene stable ID
GENE: -> Ensembl -> Transcript stable ID
EXTERNAL: -> External References (max 3) -> RefSeq mRNA ID
EXTERNAL: -> External References (max 3) -> UCSC Stable ID
Click the button Results on the top left
Click the button Go in the top center
Implementation Note: Running this script takes ~ 4 m
$ python model_GPR_to_TPR_converter.py \
-o ./results/GPR_to_TPR_results/ \
-gene_transcript_information ./input_data/GPR_to_TPR_inputs/Ensembl88_GRCh38_all_transcript_information.txt \
-model ./input_data/GPR_to_TPR_inputs/Recon2M.1_Entrez_Gene.xml
Feature: Update metabolite information Input arguments and corresponding files Following working input files can be found in: ./input_data/metabolite_information_update_inputs. These files were used for the data presented in the manuscript.
-o : Output directory
- -modelCOBRA-compliant SBML file (generic human GEM)
File name in the source: Recon2M.1_Entrez_Gene.xml
- -mnx_xrefInfo on chemical identifiers from [MetaNetX](http://www.metanetx.org/)
File name in the source: chem_xref.tsv
Click [chem_xref.tsv](http://www.metanetx.org/cgi-bin/mnxget/mnxref/chem_xref.tsv) for downloading
- -mnx_propInfo on chemical structures from [MetaNetX](http://www.metanetx.org/)
File name in the source: chem_prop.tsv
Click [chem_prop.tsv](http://www.metanetx.org/cgi-bin/mnxget/mnxref/chem_prop.tsv) for downloading
- -biggInfo on BiGG metabolites from [BiGG Models](http://bigg.ucsd.edu/)
File name in the source: bigg_models_metabolites.txt
Click [bigg_models_metabolites.txt](http://bigg.ucsd.edu/static/namespace/bigg_models_metabolites.txt) for downloading
- -chebiInfo on ChEBI and InChI from [ChEBI](https://www.ebi.ac.uk/chebi/init.do)
File name in the source: chebiId_inchi.tsv
Click [chebiId_inchi.tsv](ftp://ftp.ebi.ac.uk/pub/databases/chebi/Flat_file_tab_delimited/chebiId_inchi.tsv) for downloading
Implementation Note: Running this script takes ~ 5 s
$ python model_update_metabolite_information.py \
-o ./results/metabolite_information_update_results/ \
-model ./input_data/metabolite_information_update_inputs/Recon2M.1_Entrez_Gene.xml \
-mnx_xref ./input_data/metabolite_information_update_inputs/chem_xref.tsv \
-mnx_prop ./input_data/metabolite_information_update_inputs/chem_prop.tsv \
-bigg ./input_data/metabolite_information_update_inputs/bigg_models_metabolites.txt \
-chebi ./input_data/metabolite_information_update_inputs/chebiId_inchi.tsv
Feature: Calculate model statistics Input arguments and corresponding files Following working input files can be found in: ./input_data/model_function_inputs. These files were used for the data presented in the manuscript.
-o : Output directory
- -modelCOBRA-compliant SBML file (generic human GEM)
File name in the source: Recon2M.1_Entrez_Gene.xml
- -mediumA representative medium (RPMI-1640 medium)
File name in the source: RPMI1640_medium.txt
File format
EX_gly_LPAREN_e_RPAREN_ -0.05 1000 EX_arg_L_LPAREN_e_RPAREN_ -0.05 1000 EX_asn_L_LPAREN_e_RPAREN_ -0.05 1000 EX_asp_L_LPAREN_e_RPAREN_ -0.05 1000 EX_cys_L_LPAREN_e_RPAREN_ -0.05 1000 EX_glu_L_LPAREN_e_RPAREN_ -0.05 1000 EX_his_L_LPAREN_e_RPAREN_ -0.05 1000
Implementation Note: Running this script takes ~ 47 m
$ python model_metabolic_model_statistics.py \
-o ./results/model_statistics_results/ \
-medium ./input_data/model_function_inputs/RPMI1640_medium.txt \
-model ./input_data/model_function_inputs/Recon2M.1_Entrez_Gene.xml
Feature: Evaluate functionality of metabolic model Input arguments and corresponding files Following working input files can be found in: ./input_data/model_function_inputs. These files were used for the data presented in the manuscript.
-o : Output directory
- -modelCOBRA-compliant SBML file (generic human GEM)
File name in the source: Recon2M.1_Entrez_Gene.xml
- -mediumA representative medium (RPMI-1640 medium)
File name in the source: RPMI1640_medium.txt
- -defined_mediumA defined minimal medium
File name in the source: Defined_medium.txt
- -es_genesA list of essential genes
File name in the source: Essential_genes_from_wang_et_al.txt
- -ne_genesA list of non-essential genes
File name in the source: Non_essential_genes_from_wang_et_al.txt
- -c_sourceA list of carbon sources
File name in the source: atp_carbon_source.txt
-biomass : Reaction ID for biomass generation equation
-oxygen : Reaction ID for oxygen uptake
-atp : Reaction ID for ATP production
Implementation Note: Directly insert reaction IDs in terminal for -biomass, -oxygen and -atp
Note: Running this script takes ~ 7 m
$ python model_metabolic_function.py \
-o ./results/model_function_results/ \
-model ./input_data/model_function_inputs/Recon2M.1_Entrez_Gene.xml \
-medium ./input_data/model_function_inputs/RPMI1640_medium.txt \
-defined_medium ./input_data/model_function_inputs/Defined_medium.txt \
-es_genes ./input_data/model_function_inputs/Essential_genes_from_wang_et_al.txt \
-ne_genes ./input_data/model_function_inputs/Non_essential_genes_from_wang_et_al.txt \
-c_source ./input_data/model_function_inputs/atp_carbon_source.txt \
-biomass biomass_reaction \
-oxygen EX_o2_LPAREN_eRPAREN \
-atp DM_atp_c_
Feature: Reconstruct personal GEMs using [tINIT](http://msb.embopress.org/content/10/3/721.long) Input arguments and corresponding files Following working input files can be found in: ./input_data/tINIT_inputs. These files were used for the data presented in the manuscript.
-o : Output directory
- -modelCOBRA-compliant SBML file (generic human GEM)
File name in the source: Recon2M.1_Entrez_Gene.xml
- -mediumA representative medium (RPMI-1640 medium)
File name in the source: RPMI1640_medium.txt
- -taskA list of metabolic tasks
File name in the source: MetabolicTasks.csv
- -present_reactionA list of reactions that should be present in model
File name in the source: essential_reactions.txt
- -present_metaboliteA list of metabolites that should be present in model
File name in the source: essential_metabolites.txt
- -iOmics data
File name in the source: BLCA_T_TTL.csv
-biomass : Reaction ID for biomass generation equation
Implementation Note: Directly insert a reaction ID in terminal for -biomass
Note: Running this script for a Recon model takes ~ 8 m
$ python personal_GEM_tINIT.py \
-o ./results/tINIT_results/ \
-medium ./input_data/tINIT_inputs/RPMI1640_medium.txt \
-model ./input_data/tINIT_inputs/Recon2M.1_Entrez_Gene.xml \
-biomass biomass_reaction \
-task ./input_data/tINIT_inputs/MetabolicTasks.csv \
-present_reaction ./input_data/tINIT_inputs/essential_reactions.txt \
-present_metabolite ./input_data/tINIT_inputs/essential_metabolites.txt \
-i ./input_data/tINIT_inputs/BLCA_N_TTL.csv
Feature: Predict flux using transcript-level RNA-Seq data and GeTPRA Input arguments and corresponding files Following working input files can be found in: ./input_data/Flux_prediction. These files were used for the data presented in the manuscript.
-o : Output directory
- -g_modelCOBRA-compliant SBML file (generic human GEM)
File name in the source: Recon2M.2_BiGG_UCSC_Transcript.xml
- -c_modelCOBRA-compliant SBML file (context-specific human GEM)
File name in the source: LIHC_TCGA-BC-A10Q.xml
- -getpraGeTPRA file
File name in the source: GeTPRA.txt
- -use_getpraOption for flux prediction using transcript-level data
Insert`yes` for flux prediction using transcript-level data
Insert`no` for flux prediction using gene-level data
Implementation Note: Running this script takes ~ 7 m
$ python flux_prediction.py \
-o ./results/Flux_prediction/ \
-i ./input_data/Flux_prediction/LIHC_TCGA-BC-A10Q.csv \
-getpra ./input_data/Flux_prediction/GeTPRA.txt \
-g_model ./input_data/Flux_prediction/Recon2M.2_BiGG_UCSC_Transcript.xml \
-c_model ./input_data/Flux_prediction/LIHC_TCGA-BC-A10Q.xml \
-use_getpra yes
Publication Jae Yong Ryu 1, Hyun Uk Kim 1 & Sang Yup Lee. Framework and resource for more than 11,000 gene-transcript-protein-reaction associations in human metabolism., Proc. Natl. Acad. Sci. U.S.A., 2017, http://www.pnas.org/content/early/2017/10/23/1713050114
DeepEC¶
DeepEC running procedure
Note: Size of the protein sequence input file should be adjusted according to the memory size of your computer. This source code was developed in Linux, and has been tested in Ubuntu 14.04 with Python 2.7, Python 3.4, Python 3.5 or Python 3.6. It should be noted that Python 3.7 is currently not supported.
Clone the repository
$ git clone https://bitbucket.org/kaistsystemsbiology/deepec.git
Create and activate a conda environment
$ conda env create -f environment.yml
$ conda activate deepec
Example
Run DeepEC
$ python deepec.py -i ./example/test.fa -o ./output
DeepDDI¶
DeepDDI running procedure This project is to develop a framework that systematically predicts drug-drug interactions (DDIs) and drug-food interactions (DFIs).
Features - DeepDDI predicts DDIs and DFIs using names of drug-drug or drug-food constituent pairs and their structural information as inputs - DeepDDI predicts 86 DDI types as outputs of human-readable sentences
Note: This source code was developed in Linux, and has been tested in Ubuntu 14.04
Create and activate virtual environment
$ virtualenv venv
$ source venv/bin/activate
Install packages at the root of the repository
$ pip install pip --upgrade
$ pip install -r requirements.txt
Install [rdkit](http://www.rdkit.org/)
In our case, we installed rdkit in the root of a server using apt-get (i.e., apt-get install rdkit), and created its symbolic link in venv:
$ ln -s /usr/lib/python2.7/dist-packages/rdkit/ ./venv/lib/python2.7/site-packages/
Input files for the DeepDDI
Following working input files can be found in: ./data/. These files were used for the data presented in the manuscript.
Example
$ python run_DeepDDI.py -i ./examples/input_structures.txt -o ./output_dir/
13C-MFA¶
13C-MFA running procedure
Note:
This is a Matlab based simulator that helps to analyze fluxes in isotopically steady state using a 13C-labeled carbon source*
It was developed and tested in Windows 10 (64 bit), Matlab R2019b*
By running the provided p-files using Matlab, flux analysis using 13C can be performed*
For more detailed instructions, please refer to the provided ppt-file*
DeepTFactor¶
DeepTFactor running procedure
Note: This source code was developed in Linux, and has been tested in Ubuntu 16.04 with Python 3.6.
Clone the repository
$ git clone https://bitbucket.org/kaistsystemsbiology/deeptfactor.git
Create and activate virtual environment
$ conda env create -f environment.yml
$ conda activate deeptfactor
- To use GPU for the computation, install an appropriate version of pytorch (and cuda).
Please refer to <https://pytorch.org>
Example
Run DeepTFactor
$ python tf_running.py -i ./Dataset/example_tf.fasta -o ./result -g cpu
$ python tf_running.py -i ./Dataset/example_tf.fasta -o ./result -g cuda:1
RetroPrecursorSelection¶
Retro-precursor-selection running procedure
Note This source code works on Linux and has been tested on Ubuntu 16.04 with Python 3.6.
Clone the repository:
$ git clone https://wdjang@bitbucket.org/kaistsystemsbiology/retro-precursor-selection.git
Create and activate a conda environment (It takes less than 30 seconds):
$ conda env create -f environment.yml
$ conda activate SSA
Example
$ python run_ssa.py -i 'CCCCN'[SMILES of target product] -o output[Name of output directory]
Three output files are generated in a folder that is newly created after computation: molecule_type.txt, predicted_precursors.txt, reaction_center.txt
Run time of this source code is usually ~60 seconds.
DeepRFC¶
DeepRFC running procedure
Note: This source code was developed in Linux, and has been tested in Ubuntu 16.04 with Python 3.6. Anaconda was used as a package manager
Clone the repository
$ git clone https://bitbucket.org/kaistsystemsbiology/deeprfc.git
Create and activate a conda environment
$ conda env create -f environment.yml
$ conda activate deeprfc
If pip error occurs due to Pytorch version,
Remove followings from environment.yml
Torch==1.2.0+cu92 Torchvision==0.4.0+cu02
- -Install an appropriate version of Pytorch, according to your computing envrionment.
Please refer to https://pytorch.org/get-started/locally/
Example
Run DeepRFC
$ python deeprfc.py -i ./example/test.txt -o ./output